« 百度の日本語入力 Baidu Type を使ってみた | トップページ | 浅田真央選手 フィギュア全日本選手権25日開幕 »

2009年12月20日 (日)

虚数の情緒―中学生からの全方位独学法

虚数の情緒―中学生からの全方位独学法

吉田 武 (著)

高価(4,515円)な本ですが、手にすると必ず納得して、これは良書を買ったとちょっと得した気分になると思います。

副題に「中学生からの」とありますが、内容的には中学生にはちょっと難しいと思います。しかし、そのことを否定的にとらることはやめて、「できるだけわかりやすく解説している」ととらえると納得できます。

目次や次の説明を見るとわかると思いますが、虚数について、全方位的な事象を例に解説した本です。もちろん、この本から学べることは虚数だけにとどまりません。

1000ページもありますが、毎日少しずつ読み進めていける本です。

目次に0章があるというのも面白いなと思いました。

商品の説明(アマゾン)

「本書は人類文化の全体的把握を目指した科目分野に拘らない"独習書"である」("はしがき"より)。本書を一言で言い表すとしたらこれに尽きる。
  題名からすると、中学生以上に向けた数学解説書のように思われるが、実際はそんな生半可な本ではない。本書は「虚数」の概念を軸として人類文化全体を鳥瞰(ちょうかん)した、実に1000ページを超える大著である。いままで西洋人によって書かれた類書はいくつかあり、それらに触れるたびに西洋文化の重厚さに圧倒される思いをしてきた。本書はその西洋文化の華々しい成果を扱っているわけだが、根底に流れる思想からは強く日本文化の香りがする。その理由は著者が対象について深く理解し血肉とし、それを改めて自らの言葉で述べているからである。

  著者は文中で「新しい文化を取り入れるという事は、決して自らの文化への"接ぎ木"をすることではなく、それを深く理解し自らの血肉とすることである」と繰り返し強調しているが、本書はその実践の結果である。また、副題からもわかるとおり中高生の読者を意識しており、冒頭からかなりのページを割いて「学ぶとは、理解するとはどういう事か?」について説いている。

  筆者が深く理解することの重要性を意識して書いているため、円周率やネイピア数などを電卓で実際に計算するなど、自ら手を動かし、実感をもって深く理解できるように工夫されている。数学や物理の解説のほかに分子生物学から俳句、漢詩に至るまでの関連事項が豊富な上、研究者の横顔(あまり知られていない日本人科学者のエピソードも豊富)などが多く散りばめられており、読みものとしても十分に楽しめる。時間のあるときに電卓を傍らに置いてゆっくりと楽しみたい本である。(別役 匝)

内容(「BOOK」データベースより)

本書は人類文化の全体的把握を目指した科目分類に拘らない「独習書」である。歴史、文化、科学など多くの分野が、虚数を軸に悠然たる筆致で書かれている。また人生の「参考書」ともなるよう、様々な分野の天才達を縦横に配した。漢字、電卓の積極活用なども他に例の無い独特のものである。

単行本: 1001ページ
出版社: 東海大学出版会 (2000/03)
ISBN-10: 4486014855
ISBN-13: 978-4486014850
発売日: 2000/03
商品の寸法: 22.2 x 15.8 x 5.6 cm

目次

第I部 独りで考える為に
 0章 方法序説:学問の散歩道
  0.1 数学教育の問題点
    0.1.1 数学は積み重ねか
    0.1.2 数学は暗記科目か
    0.1.3 数学は役に立つか
  0.2 選択の自由と個性
    0.2.1 選択の自由とは何か
    0.2.2 個性とは何か
    0.2.3 生き甲斐とは何か
  0.3 子供とは如何なる存在か
    0.3.1 子供は無邪気か
    0.3.2 子供は自分をどう見ているか
    0.3.3 「民主主義」とは何か
  0.4 文明と文化と
    0.4.1 読書の意味
    0.4.2 時代の表記法:干支と元号
  0.5 「科学」と「技術」
    0.5.1 歴史小説と歴史年表
    0.5.2 狩猟民族としての科学者
    0.5.3 適性を見抜く
    0.5.4 高次のロマンを求めて
  0.6 物理と数学の関係
    0.6.1 数式と記号:なぜ数式を用いるのか
    0.6.2 推論の道具として
    0.6.3 帰納と演繹
    0.6.4 特殊から一般へ
  0.7 数学を敬遠するとどうなるか
    0.7.1 人を愉しませる文化
    0.7.2 無意味な区分け
    0.7.3 二分法を越えて
    0.7.4 マスコミの影響
    0.7.5 人文嫌いは何故生まれるか
    0.7.6 数学に挑む
  0.8 知性の誕生
    0.8.1 宇宙の誕生
    0.8.2 物質の誕生
    0.8.3 星の誕生
    0.8.4 太陽,地球,そして生命の誕生
    0.8.5 人類の誕生
    0.8.6 文化の誕生
    0.8.7 我々は如何なる存在か
  0.9 旅立ちの前に
    0.9.1 研究とは何か
    0.9.2 ものの見方
    0.9.3 過去の全人類の頭脳の集約として
    0.9.4 第一部の終りに
第II部 叩け電卓!掴め数学!
 1章 自然数:数の始まり
  1.1 すべては自然数から始まる
    1.1.1 素読の勧め
    1.1.2 計算の初め:九九
  1.2 計算の規則
  1.3 数の原子:素数
    1.3.1 素数と素因数分解
    1.3.2 エラトステネスの篩
  1.4 約数と倍数
    1.4.1 原子論
    1.4.2 数の原子論
  1.5 奇数と偶数 
  1.6 空きの記号「0」
    1.6.1 記数法:10進法
    1.6.2 指数法則
    1.6.3 記数法:60進法
 2章 整数:符号を持つ数
  2.1 数としての「0」
  2.2 自然数から整数へ
    2.2.1 整数の持つ方向性
    2.2.2 指数法則:整数の場合 
    2.2.3 整数の濃度
  2.3 暗算の秘術
    2.3.1 法則を探る
    2.3.2 式の展開と因数分解
  2.4 パスカルの三角形
  2.5 基本的な図形の持つ性質
    2.5.1 太陽光線と同位角
    2.5.2 三角形の内角の和
    2.5.3 地球を測った男
    2.5.4 図形の等式:合同とは何か
    2.5.5 図形の拡大と縮小:相似とは何か
  2.6 三平方の定理
    2.6.1 ピタゴラス数
    2.6.2 プリンプトン?322
  2.7 フェルマー・ワイルスの定理
 3章 有理数:比で表せる数
  3.1 分数の加減乗除
    3.1.1 足し算・引き算
    3.1.2 掛け算・割り算
  3.2 電卓のエラー表示
  3.3 小数の種類
    3.3.1 有限小数と無限小数
    3.3.2 循環小数の「新しい表現」
  3.4 小数の表し方
    3.4.1 10進数の指数表記法
    3.4.2 2進数とエジプトの数学
    3.4.3 2進小数
  3.5 電卓の誤差
  3.6 小数と分数:相互の変換
  3.7 計算の精度
  3.8 バビロニアン・テーブルの秘密
  3.9 有理数の濃度
 4章 無理数:比で表せない数
  4.1 帰謬法の考え方
  4.2 無理数と小数の関係
  4.3 ギリシャの思想と無理数
    4.3.1 タレス
    4.3.2 ピタゴラス
    4.3.3 もう一つの粘土板
    4.3.4 プラトン
    4.3.5 洞窟の比喩とイデア論
  4.4 平方根の大きさを見積る
  4.5 無理数の居場所
  4.6 無理数と有理数の関係
    4.6.1 指数法則:有理数の場合
    4.6.2 無理数を近似する有理数
    4.6.3 指数法則:無理数の場合
  4.7 数を聴く・音を数える
    4.7.1 ピタゴラス音律
    4.7.2 純正調音律
    4.7.3 十二平均律
  4.8 無理数の「循環する表現」
 5章 実数:連続な数
  5.1 実数の連続性
    5.1.1 繰り返し計算の行き着く先
    5.1.2 数の減り方
  5.2 実数の濃度
  5.3 数と方程式
    5.3.1 式に関する用語
    5.3.2 一次方程式の解法
    5.3.3 方程式と関数
  5.4 座標と関数のグラフ
    5.4.1 グラフと座標
    5.4.2 一次関数のグラフ
    5.4.3 連立方程式とグラフ
    5.4.4 座標の変換
  5.5 等号の意味と怪しい用法
    5.5.1 等号の用法
    5.5.2 英文法と等号
  5.6 実数の濃度と平面の濃度
 6章 実数:拡張を持つ数
  6.1 二次方程式
    6.1.1 根の公式
    6.1.2 誤差と相対誤差
  6.2 円周率を求める
    6.2.1 三平方の定理と漸化式
    6.2.2 桁落ちを避ける
    6.2.3 角度と弧度
  6.3 二次方程式と二次関数
    6.3.1 二次関数の最大値と最小値
    6.3.2 接線の傾きと極値
    6.3.3 関数の連鎖
    6.3.4 等積変形から反比例へ
  6.4 平方根を四則から求める
  6.5 美の論理と自然の神秘
    6.5.1 複写用紙の幾何学
    6.5.2 黄金分割
    6.5.3 見事な,余りにも見事な
    6.5.4 フィボナッチの数列
    6.5.5 黄金数とフィボナッチ数の精妙な関係
  6.6 天才・アルキメデスの剛腕
    6.6.1 不世出の天才の業績
    6.6.2 取り尽くし法
    6.6.3 二段階帰謬法
 7章 虚数:想像された数
  7.1 虚数の誕生
  7.2 数の多角形
    7.2.1 1のn乗根
    7.2.2 ガウスの素数
    7.2.3 アイゼンシュタインの素数
  7.3 二次方程式と確率
    7.3.1 サイコロの確率
    7.3.2 虚根の確率
  7.4 誕生日と確率
    7.4.1 鳩の巣論法
    7.4.2 誕生日と鳩の巣
  7.5 階乗と「いろは歌」
  7.6 虚数の情緒
    7.6.1 数学と感情
    7.6.2 虚数への旅路を振り返る
    7.6.3 原子と光の物理学:万物は虚数である
    7.6.4 時空の物理学:世界は虚数である
    7.6.5 我々は虚数である
 8章 指数の広がり
  8.1 指数法則の復習
  8.2 指数関数
  8.3 指数関数の近似とネイピア数
    8.3.1 指数関数を近似する
    8.3.2 新しい定数
    8.3.3 近似式の威力
  8.4 近似の程度を高める
  8.5 指数関数の連鎖
  8.6 指数関数の逆の関係
    8.6.1 指数法則の裏返し
    8.6.2 手動計算機を作ろう
 9章 虚実の挟間:全数学の合流点
  9.1 虚々実々なる関係
    9.1.1 eの虚数乗を求める
    9.1.2 虚数単位を指数で表す
    9.1.3 周期性を探る
    9.1.4 虚数の虚数乗を求める
  9.2 幾何学との関係
  9.3 三角関数 
  9.4 オイラーの公式
  9.5 オイラーの公式の応用
    9.5.1 指数法則の利用:加法定理の導出
    9.5.2 三角関数の連鎖
  9.6 三角関数の値の新しい系列
    9.6.1 1のn乗根の利用
    9.6.2 正多角形の利用
  9.7 粘土板は古代の電卓か
  9.8 何故「年代」が判るのか
    9.8.1 ミクロとマクロを繋ぐもの
    9.8.2 放射性同位体と半減期
  9.9 一つの旅を終えて
第III部 振子の科学
 10章 物理学の出発点:力学
  10.1 問題設定と実験の準備
    10.1.1 ゴジラの悩み
    10.1.2 振子を作る
  10.2 基本的な事柄
    10.2.1 「静止」を考える:作用・反作用の法則
    10.2.2 掌の上のボール:重さと質量
    10.2.3 振子の台を動かすと
    10.2.4 斜面の実験と慣性
  10.3 運動に関する用語
  10.4 ガリレイの探究
    10.4.1 斜面から落下へ
    10.4.2 重力加速度を測る
    10.4.3 落下の法則
    10.4.4 水準器と加速度計
    10.4.5 大自然の制約
  10.5 ニュートン力学
    10.5.1 微積分の発見
    10.5.2 ニュートンの三法則
  10.6 重さと質量とバネ秤
  10.7 運動量の保存法則
    10.7.1 空間の一様性
    10.7.2 ロケットの推進原理
  10.8 回転運動の基礎
    10.8.1 重力の中心:バットの重心を求める
    10.8.2 回転の基礎方程式
    10.8.3 「梃子」と「天秤」
  10.9 エネルギーとは何か
    10.9.1 仕事とエネルギー
    10.9.2 力学的エネルギーの保存
  10.10 温度と分子の運動
    10.10.1 経験的温度目盛
    10.10.2 気体分子運動論
  10.11 相対論と三平方の定理
    10.11.1 「運動」を見る二つの立場
    10.11.2 動く座標の考え方
  10.12 運動量保存則の応用:体育との関係
    10.12.1 野球:打撃用語の確立
    10.12.2 「壁」を調べる
    10.12.3 反射の法則:ビリヤード
    10.12.4 反射の法則:打撃への応用
    10.12.5 回転の中に隠された直線運動
  10.13 音による打撃の解析
    10.13.1 「素振りの音」の物理学:順問題の解析
    10.13.2 「素振りの音」の物理学:逆問題の解析
 11章 重力と振子の饗宴
  11.1 調和振動子
    11.1.1 理想の振子
    11.1.2 調和振動子とその解
    11.1.3 線型方程式と数ベクトル
    11.1.4 曲芸的計算
    11.1.5 解を調べる
    11.1.6 古典力学の因果律
  11.2 実際の振子の運動
    11.2.1 振子を動かす力
    11.2.2 運動方程式と振子の周期
    11.2.3 振子による動力加速度の測定
    11.2.4 サイクロイド振子と橋渡し振子
  11.3 振子の応用
    11.3.1 身体の中の「振子」
    11.3.2 現実の振子
    11.3.3 バットの振り心地
  11.4 最短時間バット軌道
  11.5 急がば回れ:トライアスロンと屈折率
  11.6 様々な振子
    11.6.1 遅い振子:やじろべえ,逆さ振子
    11.6.2 速い振子:二本吊り振子
    11.6.3 連成振子:ブラックバーン振子
    11.6.4 減衰振子:ドア・クローザーと糖尿病
    11.6.5 強制振子:共振現象
    11.6.6 音の足し算:フーリエ級数
  11.7 隠れた振子
    11.7.1 自励振動:はためく旗
    11.7.2 乗り物の自立安定性に就いて
    11.7.3 反撥係数と「送りバント」
    11.7.4 パラメータ励振:揺れるブランコ
  11.8 宇宙へ誘う振子
    11.8.1 ナイルの曲線
    11.8.2 フーコーの振子
 12章 波と粒子の狭間で
  12.1 波動方程式
    12.1.1 波とは何か
    12.1.2 波動方程式を求める
    12.1.3 弦の運動
  12.2 干渉と回折
    12.2.1 波の干渉
    12.2.2 波と複素ベクトル
    12.2.3 二つのスリット
    12.2.4 回折格子
    12.2.5 「一つのスリット」での回折
    12.2.6 ヤングの実験の解析
  12.3 光学と電磁気学と
    12.3.1 マックスウェル方程式
    12.3.2 光の歴史
    12.3.3 量子の革命
  12.4 量子力学の基礎
    12.4.1 文学部卒・ノーベル物理学賞受賞
    12.4.2 シュレーディンガー方程式の発見的導出
    12.4.3 基本粒子の世界
    12.4.4 不確定性原理
    12.4.5 交換関係
    12.4.6 波動関数とは何か
  12.5 電磁場の量子化
    12.5.1 量子力学に於ける振子
    12.5.2 演算子の計算
    12.5.3 場から粒子へ
  12.6 径路の魔術:量子電磁力学
    12.6.1 君は何処からやって来たのか
    12.6.2 光は何故その場所を知っているのか
    12.6.3 光は本当にすべての径路を通っているのか
    12.6.4 光は真っ直ぐ進まない
    12.6.5 踊る光子の不思議な絵
  12.7 場の量子論:そして「量子脳力学」へ
    12.7.1 場の量子論の誕生
    12.7.2 「場」と「真空」
    12.7.3 ボソンとフェルミオン
    12.7.4 「自発的対称性の破れ」とは何か
    12.7.5 南部・ゴールドストーン粒子
    12.7.6 脳の機能:記憶の物理理論
    12.7.7 量子脳力学
    12.7.8 「フェルミオン思考」から「ボソン思考」へ
    12.7.9 若きハムレット達に捧げる

人気ブログランキングへ

|

« 百度の日本語入力 Baidu Type を使ってみた | トップページ | 浅田真央選手 フィギュア全日本選手権25日開幕 »

書籍・雑誌」カテゴリの記事

理科教育」カテゴリの記事

コメント

こんばんは。
ジュンク堂でご本を見てみました。表紙を開くなり、漢字のふりがなに、めまいしそうになりました(^^;。行間が狭くなるので、読み進められるかなぁと心配しているうちに、だんだん漢字のふりがながなくなってきました。って、立ち読みを少しました。
最近[Book OFF]に通いだして、このご本あるかなぁと探したんですが、ここにはありませんでした。中古って嫌いだったんですが、なかなかどうしてきれいな本があります。これで、お安く欲しい本が手に入れば嬉しいだけどなぁ。最近ケチしてます。

投稿: マダム | 2009年12月23日 (水) 17時33分

なかなか面白いですよ。

投稿: toshizo | 2009年12月20日 (日) 20時30分

こんにちは。
目次を見ているだけで面白いです。
サークルのテキストにいいかも。
でも、
サークルに使用テキストには、ちょっとお高いかも。
こんなご本でぼちぼち学習してみたいです。

投稿: マダム | 2009年12月20日 (日) 11時59分

コメントを書く



(ウェブ上には掲載しません)




トラックバック

この記事のトラックバックURL:
http://app.cocolog-nifty.com/t/trackback/203483/47060301

この記事へのトラックバック一覧です: 虚数の情緒―中学生からの全方位独学法 :

« 百度の日本語入力 Baidu Type を使ってみた | トップページ | 浅田真央選手 フィギュア全日本選手権25日開幕 »